Carbon dioxide efflux from soil with poultry litter applications in conventional and conservation tillage systems in northern Alabama.

نویسندگان

  • T Roberson
  • K C Reddy
  • S S Reddy
  • E Z Nyakatawa
  • R L Raper
  • D W Reeves
  • J Lemunyon
چکیده

Increased CO2 release from soils resulting from agricultural practices such as tillage has generated concerns about contributions to global warming. Maintaining current levels of soil C and/or sequestering additional C in soils are important mechanisms to reduce CO2 in the atmosphere through production agriculture. We conducted a study in northern Alabama from 2003 to 2006 to measure CO2 efflux and C storage in long-term tilled and non-tilled cotton (Gossypium hirsutum L.) plots receiving poultry litter or ammonium nitrate (AN). Treatments were established in 1996 on a Decatur silt loam (clayey, kaolinitic thermic, Typic Paleudults) and consisted of conventional-tillage (CT), mulch-tillage (MT), and no-tillage (NT) systems with winter rye [Secale cereale (L.)] cover cropping and AN and poultry litter (PL) as nitrogen sources. Cotton was planted in 2003, 2004, and 2006. Corn was planted in 2005 as a rotation crop using a no-till planter in all plots, and no fertilizer was applied. Poultry litter application resulted in higher CO2 emission from soil compared with AN application regardless of tillage system. In 2003 and 2006, CT (4.39 and 3.40 micromol m(-2) s(-1), respectively) and MT (4.17 and 3.39 micromol m(-2) s(-1), respectively) with PL at 100 kg N ha(-1) (100 PLN) recorded significantly higher CO2 efflux compared with NT with 100 PLN (2.84 and 2.47 micromol m(-2) s(-1), respectively). Total soil C at 0- to 15-cm depth was not affected by tillage but significantly increased with PL application and winter rye cover cropping. In general, cotton produced with NT conservation tillage in conjunction with PL and winter rye cover cropping reduced CO2 emissions and sequestered more soil C compared with control treatments.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Soil erosion estimation in conservation tillage systems with poultry litter application using RUSLE 2.0 model

Soil erosion is a major threat to global economic and environmental sustainability. This study evaluated long-term effects of conservation tillage with poultry litter application on soil erosion estimates in cotton (Gossypium hirsutum L.) plots using RUSLE 2.0 computer model. Treatments consisting of no-till, mulch-till, and conventional tillage systems, winter rye (Secale cereale L.) cover cro...

متن کامل

Tillage, cropping systems, and nitrogen fertilizer source effects on soil carbon sequestration and fractions.

Quantification of soil carbon (C) cycling as influenced by management practices is needed for C sequestration and soil quality improvement. We evaluated the 10-yr effects of tillage, cropping system, and N source on crop residue and soil C fractions at 0- to 20-cm depth in Decatur silt loam (clayey, kaolinitic, thermic, Typic Paleudults) in northern Alabama, USA. Treatments were incomplete fact...

متن کامل

TILLAGE AND CROPPING SYSTEMS Tillage and Poultry Litter Application Effects on Cotton Growth and Yield

Triticum spp.), corn (Zea mays L.), and soybean [Glycine max (L.) Merr.], which generally have had success Although use of no-tillage in cotton (Gossypium hirsutum L.) pro with no-tillage. Cotton does not produce enough residuction in the southeast USA has dramatically increased recently, dues to supply the C necessary to increase soil organic reports of reduced seedling emergence, poor plant e...

متن کامل

Predicting soil erosion in conservation tillage cotton production systems using the revised universal soil loss equation (RUSLE)

Despite being one of the most pro®table crops for the southeastern USA, cotton (Gossypium hirsutum L.) is considered to create a greater soil erosion hazard than other annual crops such as corn (Zea mays L.) and soybeans (Glycine max (L.) Merr.). Reduced tillage systems and cover cropping can reduce soil erosion and leaching of nutrients into ground water. The objectives of this study, which wa...

متن کامل

Effects of Elevated Atmospheric Co2 on Soil Co2 Efflux in Conventional and Conservation Cropping Systems

Elevated atmospheric carbon dioxide (CO2) can affect both the quantity and quality of plant tissues produced, which will impact the cycling and storage of carbon (C) within plant/soil systems and thus the rate of CO2 release back to the atmosphere. Research is needed to more accurately quantify the effects of elevated CO2 and associated feedbacks on soil CO2 efflux in order to predict the poten...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of environmental quality

دوره 37 2  شماره 

صفحات  -

تاریخ انتشار 2008